Volume 3, Issue 1, January 2018, Page: 15-35
Insights on Heterologous Expression of Fungal Cellulases in Pichia pastoris
Sajid Kamal, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
Shahid Ullah Khan, College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, P. R. China
Nawshad Muhammad, Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS Institute of Information Technology, Lahore, Pakistan
Muhammad Shoaib, School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
Mukama Omar, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P. R. China; Department of Biology, College of Science and Technology, University of Rwanda, Kigali, Rwanda
Kaneza Pascal, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
Mukasekuru Marie Rose, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
Fubao Fuelbiol Sun, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
Received: Feb. 17, 2018;       Accepted: Mar. 27, 2018;       Published: Apr. 2, 2018
DOI: 10.11648/j.bmb.20180301.13      View  1207      Downloads  71
Abstract
Cellulosic biomass, the most remarkable renewable source of fuels and other compounds of potential importance, needs highly complex mixture of various enzymes for its degradation. For sustainable and economical bioprocess, the availability of these enzymes in high quantities and at a low price is much warranted. The advancements in discovery of new strains, highly valuable techniques and molecular biotechnological tools have led to Pichia pastoris gaining a recognized organism status both at industrial as well as laboratory level. With numerous beneficial characteristics on its credit P. pastoris has emerged a promising host for most of heterologous proteins production. Thus, the production of fungal cellulytic enzymes is of worth to be comprehensively illustrated. There are some activators including promoters used in the expression host to increase the utility of expression system. This review summarizes the heterologous expression of fungal cellulases (Exo-glucanases, endo-glucanases (EGs) and beta-glucosidases (BGLs)) and advocates the various kinds of promoters used in P. Pastoris for expression of these enzymes and proteins. Further, concluding remarks will provide insights revealing the scope of P. pastoris as a potential expression system tool in today's modern direction of research.
Keywords
Pichia pastoris, Heterologous Expression, Fungal Cellulases, Promoters, Synthetic Core Promoters
To cite this article
Sajid Kamal, Shahid Ullah Khan, Nawshad Muhammad, Muhammad Shoaib, Mukama Omar, Kaneza Pascal, Mukasekuru Marie Rose, Fubao Fuelbiol Sun, Insights on Heterologous Expression of Fungal Cellulases in Pichia pastoris, Biochemistry and Molecular Biology. Vol. 3, No. 1, 2018, pp. 15-35. doi: 10.11648/j.bmb.20180301.13
Copyright
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Owen, N. A.; Inderwildi, O. R.; King, D. A., The status of conventional world oil reserves—Hype or cause for concern? Energy policy 2010, 38, (8), 4743-4749.
[2]
Phitsuwan, P.; Sakka, K.; Ratanakhanokchai, K., Improvement of lignocellulosic biomass in planta: a review of feedstocks, biomass recalcitrance, and strategic manipulation of ideal plants designed for ethanol production and processability. Biomass and bioenergy 2013, 58, 390-405.
[3]
Hendriks, A.; Zeeman, G., Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource technology 2009, 100, (1), 10-18.
[4]
Morgan, J. L.; Strumillo, J.; Zimmer, J., Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 2013, 493, (7431), 181-186.
[5]
Menon, V.; Rao, M., Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science 2012, 38, (4), 522-550.
[6]
Limayem, A.; Ricke, S. C., Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science 2012, 38, (4), 449-467.
[7]
van den Brink, J.; de Vries, R. P., Fungal enzyme sets for plant polysaccharide degradation. Applied microbiology and biotechnology 2011, 91, (6), 1477-1492.
[8]
Haon, M.; Grisel, S.; Navarro, D.; Gruet, A.; Berrin, J.-G.; Bignon, C., Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris. Frontiers in microbiology 2015, 6.
[9]
Ahmad, M.; Hirz, M.; Pichler, H.; Schwab, H., Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Applied microbiology and biotechnology 2014, 98, (12), 5301-5317.
[10]
Cregg, J. M.; Vedvick, T. S.; Raschke, W. C., Recent advances in the expression of foreign genes in Pichia pastoris. Nature Biotechnology 1993, 11, (8), 905-910.
[11]
Bill, R. M., Playing catch-up with Escherichia coli: using yeast to increase success rates in recombinant protein production experiments. Recombinant protein expression in microbial systems 2014, 81.
[12]
Cereghino, J. L.; Cregg, J. M., Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS microbiology reviews 2000, 24, (1), 45-66.
[13]
Welch, M.; Govindarajan, S.; Ness, J. E.; Villalobos, A.; Gurney, A.; Minshull, J.; Gustafsson, C., Design parameters to control synthetic gene expression in Escherichia coli. PloS one 2009, 4, (9), e7002.
[14]
Gasser, B.; Sauer, M.; Maurer, M.; Stadlmayr, G.; Mattanovich, D., Transcriptomics-based identification of novel factors enhancing heterologous protein secretion in yeasts. Applied and environmental microbiology 2007, 73, (20), 6499-6507.
[15]
Mellitzer, A.; Weis, R.; Glieder, A.; Flicker, K., Expression of lignocellulolytic enzymes in Pichia pastoris. Microbial cell factories 2012, 11, (1), 1.
[16]
Blazeck, J.; Alper, H. S., Promoter engineering: recent advances in controlling transcription at the most fundamental level. Biotechnology journal 2013, 8, (1), 46-58.
[17]
Vogl, T.; Ruth, C.; Pitzer, J.; Kickenweiz, T.; Glieder, A., Synthetic core promoters for Pichia pastoris. ACS synthetic biology 2013, 3, (3), 188-191.
[18]
Singhania, R. R.; Patel, A. K.; Sukumaran, R. K.; Larroche, C.; Pandey, A., Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresource Technology 2013, 127, 500-507.
[19]
Hasunuma, T.; Okazaki, F.; Okai, N.; Hara, K. Y.; Ishii, J.; Kondo, A., A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresource technology 2013, 135, 513-522.
[20]
Galbe, M.; Zacchi, G., Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass and bioenergy 2012, 46, 70-78.
[21]
Ritter, S., A Fast Track to Green Gasoline. Chem. Eng. News 2008, 86, (10).
[22]
Juturu, V.; Wu, J. C., Microbial cellulases: Engineering, production and applications. Renewable and Sustainable Energy Reviews 2014, 33, 188-203.
[23]
Laymon, R. A.; Adney, W. S.; Mohagheghi, A.; Himmel, M. E.; Thomas, S. R. In Cloning and expression of full-length Trichoderma reesei cellobiohydrolase I cDNAs in Escherichia coli, Seventeenth Symposium on Biotechnology for Fuels and Chemicals, 1996; Springer: 1996; pp 389-397.
[24]
Boer, H.; Teeri, T. T.; Koivula, A., Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters. Biotechnology and bioengineering 2000, 69, (5), 486-494.
[25]
Ekperigin, M., Preliminary studies of cellulase production by Acinetobacter anitratus and Branhamella sp. African Journal of Biotechnology 2007, 6, (1).
[26]
Horikawa, Y.; Sugiyama, J., Accessibility and size of Valonia cellulose microfibril studied by combined deuteration/rehydrogenation and FTIR technique. Cellulose 2008, 15, (3), 419-424.
[27]
Cragg, S. M.; Beckham, G. T.; Bruce, N. C.; Bugg, T. D.; Distel, D. L.; Dupree, P.; Etxabe, A. G.; Goodell, B. S.; Jellison, J.; McGeehan, J. E., Lignocellulose degradation mechanisms across the Tree of Life. Current Opinion in Chemical Biology 2015, 29, 108-119.
[28]
Donohoe, B. S.; Resch, M. G., Mechanisms employed by cellulase systems to gain access through the complex architecture of lignocellulosic substrates. Current opinion in chemical biology 2015, 29, 100-107.
[29]
Singh, B. K., Exploring microbial diversity for biotechnology: The way forward. Trends in biotechnology 2010, 28, (3), 111-116.
[30]
Prakash, D.; Nawani, N.; Prakash, M.; Bodas, M.; Mandal, A.; Khetmalas, M.; Kapadnis, B., Actinomycetes: a repertory of green catalysts with a potential revenue resource. BioMed research international 2013, 2013.
[31]
Callow, N. V.; Ray, C. S.; Kelbly, M. A.; Ju, L.-K., Nutrient control for stationary phase cellulase production in Trichoderma reesei Rut C-30. Enzyme and microbial technology 2016, 82, 8-14.
[32]
Sharma, B.; Agrawal, R.; Singhania, R. R.; Satlewal, A.; Mathur, A.; Tuli, D.; Adsul, M., Untreated wheat straw: Potential source for diverse cellulolytic enzyme secretion by Penicillium janthinellum EMS-UV-8 mutant. Bioresource technology 2015, 196, 518-524.
[33]
Saini, R.; Saini, J. K.; Adsul, M.; Patel, A. K.; Mathur, A.; Tuli, D.; Singhania, R. R., Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application. Bioresource technology 2015, 188, 240-246.
[34]
Lan, T.-Q.; Wei, D.; Yang, S.-T.; Liu, X., Enhanced cellulase production by Trichoderma viride in a rotating fibrous bed bioreactor. Bioresource technology 2013, 133, 175-182.
[35]
Zhang, F.; Chen, J.-J.; Ren, W.-Z.; Nie, G.-X.; Ming, H.; Tang, S.-K.; Li, W.-J., Cloning, expression and characterization of an alkaline thermostable GH9 endoglucanase from Thermobifida halotolerans YIM 90462 T. Bioresource technology 2011, 102, (21), 10143-10146.
[36]
Jones, B. E.; Van Der Kleij, W. A.; Van Solingen, P.; Weyler, W.; Goedegebuur, F., Cellulase producing actinomycetes, cellulase produced therefrom and method of producing same. In Google Patents: 2003.
[37]
George, S. P.; Ahmad, A.; Rao, M. B., Studies on carboxymethyl cellulase produced by an alkalothermophilic actinomycete. Bioresource Technology 2001, 77, (2), 171-175.
[38]
Andersen, B.; Poulsen, R.; Hansen, G. H., Cellulolytic and xylanolytic activities of common indoor fungi. International Biodeterioration & Biodegradation 2016, 107, 111-116.
[39]
de Oliveira, S. L. R.; Maciel, T. C.; Sancho, S. O.; Rodrigues, S., Solid-state production of cellulase by Melanoporia sp. CCT 7736: a new strain isolated from coconut shell (Cocos nucifera L.). Bioresources and Bioprocessing 2016, 3, (1), 1.
[40]
Trujillo-Cabrera, Y.; Ponce-Mendoza, A.; Vásquez-Murrieta, M. S.; Rivera-Orduña, F. N.; Wang, E. T., Diverse cellulolytic bacteria isolated from the high humus, alkaline-saline chinampa soils. Annals of microbiology 2013, 63, (2), 779-792.
[41]
Sujatha, E.; Santoshkuar, S.; Shiva Krishna, P., Optimization and characterization of cellulases from thermophilic strain of Scytalidium thermophilum SKESMBKU01. Current Research in Environmental & Applied Mycology 2014, 4, (2), 236-249.
[42]
Moubasher, A.-A. H.; Ismail, M. A.; Hussein, N. A.; Gouda, H. A., Enzyme producing capabilities of some extremophilic fungal strains isolated from different habitats of Wadi El-Natrun, Egypt. Part 2: Cellulase, xylanase and pectinase. European Journal of Biological Research 2016, 6, (2), 103-111.
[43]
Wallecha, A.; Mishra, S., Purification and characterization of two β-glucosidases from a thermo-tolerant yeast Pichia etchellsii. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 2003, 1649, (1), 74-84.
[44]
Njokweni, A.; Rose, S.; Van Zyl, W., Fungal β-glucosidase expression in Saccharomyces cerevisiae. Journal of industrial microbiology & biotechnology 2012, 39, (10), 1445-1452.
[45]
Wang, S.; Liu, G.; Wang, J.; Yu, J.; Huang, B.; Xing, M., Enhancing cellulase production in Trichoderma reesei RUT C30 through combined manipulation of activating and repressing genes. Journal of industrial microbiology & biotechnology 2013, 40, (6), 633-641.
[46]
Krogh, K. B.; Harris, P. V.; Olsen, C. L.; Johansen, K. S.; Hojer-Pedersen, J.; Borjesson, J.; Olsson, L., Characterization and kinetic analysis of a thermostable GH3 β-glucosidase from Penicillium brasilianum. Applied microbiology and biotechnology 2010, 86, (1), 143-154.
[47]
Nagraj, A.; Singhvi, M.; Ravikumar, V.; Gokhale, D., Optimization studies for enhancing cellulase production by Penicillium janthinellum mutant EU2D-21 using response surface methodology. BioResources 2014, 9, (2), 1914-1923.
[48]
de Castro, A., de Albuquerque de Carvalho ML, Leite SG, Pereira N, Jr. Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. Journal of Industrial Microbiology and Biotechnology 2010, 37, 151-158.
[49]
Mattam, A. J.; Kuila, A.; Suralikerimath, N.; Choudary, N.; Rao, P. V.; Velankar, H. R., Cellulolytic enzyme expression and simultaneous conversion of lignocellulosic sugars into ethanol and xylitol by a new Candida tropicalis strain. Biotechnology for Biofuels 2016, 9, (1), 157.
[50]
Kuila, A.; Rao, P. V.; Choudary, N. V.; Gandham, S.; Velankar, H. R., Novel natural supplement for the production of fungal cellulases and application for enzymatic saccharification of wheat straw. Environmental Progress & Sustainable Energy 2015, 34, (4), 1243-1248.
[51]
Bakri, Y.; Jacques, P.; Thonart, P., Xylanase production by Penicillium canescens 10–10c in solid-state fermentation. Applied biochemistry and biotechnology 2003, 108, (1-3), 737-748.
[52]
Adsul, M.; Sharma, B.; Singhania, R. R.; Saini, J. K.; Sharma, A.; Mathur, A.; Gupta, R.; Tuli, D. K., Blending of cellulolytic enzyme preparations from different fungal sources for improved cellulose hydrolysis by increasing synergism. RSC Advances 2014, 4, (84), 44726-44732.
[53]
Li, D.-C.; Li, A.-N.; Papageorgiou, A. C., Cellulases from thermophilic fungi: recent in sights and biotechnological potential. Enzyme research 2011, 5, (97), 1028-1038.
[54]
Li, Jianfang, Tang, Cunduo, Shi, Hongling and Wu, Minchen Cloning and optimized expression of a neutral endoglucanase gene (ncel5A) from Volvariella volvacea WX32 in Pichia pastoris. Journal of bioscience and bioengineering2011,111(5), 537-540.
[55]
Maheshwari, R.; Bharadwaj, G.; Bhat, M. K., Thermophilic fungi: their physiology and enzymes. Microbiology and molecular biology reviews 2000, 64, (3), 461-488.
[56]
Doi, R. H.; Kosugi, A., Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nature Reviews Microbiology 2004, 2, (7), 541-551.
[57]
Doi, R. H.; Kosugi, A.; Murashima, K.; Tamaru, Y.; Han, S. O., Cellulosomes from mesophilic bacteria. Journal of bacteriology 2003, 185, (20), 5907-5914.
[58]
Le Costaouëc, T.; Pakarinen, A.; Várnai, A.; Puranen, T.; Viikari, L., The role of carbohydrate binding module (CBM) at high substrate consistency: comparison of Trichoderma reesei and Thermoascus aurantiacus Cel7A (CBHI) and Cel5A (EGII). Bioresource technology 2013, 143, 196-203.
[59]
Brunecky, R.; Alahuhta, M.; Xu, Q.; Donohoe, B. S.; Crowley, M. F.; Kataeva, I. A.; Yang, S.-J.; Resch, M. G.; Adams, M. W.; Lunin, V. V., Revealing nature’s cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 2013, 342, (6165), 1513-1516.
[60]
Cantarel, B. L.; Coutinho, P. M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B., The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic acids research 2009, 37, (suppl 1), D233-D238.
[61]
Bhattacharya, A. S.; Bhattacharya, A.; Pletschke, B. I., Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production. Biotechnology letters 2015, 37, (6), 1117-1129.
[62]
Shoseyov, O.; Shani, Z.; Levy, I., Carbohydrate binding modules: biochemical properties and novel applications. Microbiology and molecular biology reviews 2006, 70, (2), 283-295.
[63]
Bayer, E. A.; Chanzy, H.; Lamed, R.; Shoham, Y., Cellulose, cellulases and cellulosomes. Current opinion in structural biology 1998, 8, (5), 548-557.
[64]
Beckham, G. T.; Matthews, J. F.; Bomble, Y. J.; Bu, L.; Adney, W. S.; Himmel, M. E.; Nimlos, M. R.; Crowley, M. F., Identification of amino acids responsible for processivity in a Family 1 carbohydrate-binding module from a fungal cellulase. The Journal of Physical Chemistry B 2010, 114, (3), 1447-1453.
[65]
Wilson, D. B., Processive and nonprocessive cellulases for biofuel production—lessons from bacterial genomes and structural analysis. Applied microbiology and biotechnology 2012, 93, (2), 497-502.
[66]
Dashtban, M.; Schraft, H.; Qin, W., Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. International journal of biological sciences 2009, 5, (6), 578.
[67]
Wilson, D. B., Microbial diversity of cellulose hydrolysis. Current opinion in microbiology 2011, 14, (3), 259-263.
[68]
Phitsuwan, P.; Laohakunjit, N.; Kerdchoechuen, O.; Kyu, K. L.; Ratanakhanokchai, K., Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy. Folia microbiologica 2013, 58, (2), 163-176.
[69]
Stam, M. R.; Danchin, E. G.; Rancurel, C.; Coutinho, P. M.; Henrissat, B., Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Engineering Design and Selection 2006, 19, (12), 555-562.
[70]
Van Dyk, J. S.; Pletschke, B. I., A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-Factors affecting enzymes, conversion and synergy. Biotechnology Advances 2012, 30, (6), 1458-1480.
[71]
Bhatia, Y.; Mishra, S.; Bisaria, V., Microbial β-glucosidases: cloning, properties, and applications. Critical reviews in biotechnology 2002, 22, (4), 375-407.
[72]
Budihal, S. R.; Agsar, D.; Patil, S. R., Enhanced production and application of acidothermophilic Streptomyces cellulase. Bioresource technology 2016, 200, 706-712.
[73]
Cragg, S. M.; Beckham, G. T.; Bruce, N. C.; Bugg, T. D. H.; Distel, D. L.; Dupree, P.; Etxabe, A. G.; Goodell, B. S.; Jellison, J.; McGeehan, J. E.; McQueen-Mason, S. J.; Schnorr, K.; Walton, P. H.; Watts, J. E. M.; Zimmer, M., Lignocellulose degradation mechanisms across the Tree of Life. Current Opinion in Chemical Biology 2015, 29, 108-119.
[74]
López, S. C.; Sietiö, O.-M.; Hildén, K.; de Vries, R. P.; Mäkelä, M. R., Homologous and Heterologous Expression of Basidiomycete Genes Related to Plant Biomass Degradation. In Gene Expression Systems in Fungi: Advancements and Applications, Springer: 2016; pp 119-160.
[75]
Floudas, D.; Binder, M.; Riley, R.; Barry, K.; Blanchette, R. A.; Henrissat, B.; Martínez, A. T.; Otillar, R.; Spatafora, J. W.; Yadav, J. S., The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 2012, 336, (6089), 1715-1719.
[76]
Xie, N.; Chapeland‐Leclerc, F.; Silar, P.; Ruprich‐Robert, G., Systematic gene deletions evidences that laccases are involved in several stages of wood degradation in the filamentous fungus Podospora anserina. Environmental microbiology 2014, 16, (1), 141-161.
[77]
Jolivalt, C.; Madzak, C.; Brault, A.; Caminade, E.; Malosse, C.; Mougin, C., Expression of laccase IIIb from the white-rot fungus Trametes versicolor in the yeast Yarrowia lipolytica for environmental applications. Applied microbiology and biotechnology 2005, 66, (4), 450-456.
[78]
Raghukumar, C.; D'Souza-Ticlo, D.; Verma, A., Treatment of colored effluents with lignin-degrading enzymes: an emerging role of marine-derived fungi. Critical Reviews in Microbiology 2008, 34, (3-4), 189-206.
[79]
Riley, R.; Salamov, A. A.; Brown, D. W.; Nagy, L. G.; Floudas, D.; Held, B. W.; Levasseur, A.; Lombard, V.; Morin, E.; Otillar, R., Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proceedings of the National Academy of Sciences 2014, 111, (27), 9923-9928.
[80]
Pollegioni, L.; Tonin, F.; Rosini, E., Lignin‐degrading enzymes. FEBS Journal 2015, 282, (7), 1190-1213.
[81]
Qi, M.; Jun, H.-S.; Forsberg, C. W., Characterization and synergistic interactions of Fibrobacter succinogenes glycoside hydrolases. Applied and Environmental Microbiology 2007, 73, (19), 6098-6105.
[82]
Zhang, X.-Z.; Sathitsuksanoh, N.; Zhang, Y. H. P., Glycoside hydrolase family 9 processive endoglucanase from Clostridium phytofermentans: Heterologous expression, characterization, and synergy with family 48 cellobiohydrolase. Bioresource Technology 2010, 101, (14), 5534-5538.
[83]
Zhang, Y. H. P.; Lynd, L. R., Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering 2004, 88, (7), 797-824.
[84]
Andersen, N.; Johansen, K. S.; Michelsen, M.; Stenby, E. H.; Krogh, K. B. R. M.; Olsson, L., Hydrolysis of cellulose using mono-component enzymes shows synergy during hydrolysis of phosphoric acid swollen cellulose (PASC), but competition on Avicel. Enzyme and Microbial Technology 2008, 42, (4), 362-370.
[85]
Woodward, J., SYNERGISM IN CELLULASE SYSTEMS. Bioresource Technology 1991, 36, (1), 67-75.
[86]
Lynd, L. R.; Weimer, P. J.; van Zyl, W. H.; Pretorius, I. S., Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews 2002, 66, (3), 506-+.
[87]
Schwarz, W. H., The cellulosome and cellulose degradation by anaerobic bacteria. Applied Microbiology and Biotechnology 2001, 56, (5-6), 634-649.
[88]
Gusakov, A. V.; Salanovich, T. N.; Antonov, A. I.; Ustinov, B. B.; Okunev, O. N.; Burlingame, R.; Emalfarb, M.; Baez, M.; Sinitsyn, A. P., Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering 2007, 97, (5), 1028-1038.
[89]
Samayam, I. P.; Schall, C. A., Saccharification of ionic liquid pretreated biomass with commercial enzyme mixtures. Bioresource Technology 2010, 101, (10), 3561-3566.
[90]
Samejima M, S. J., Igarashi K, Eriksson K-EL, Enzymatic hydrolysis of bacterial cellulose. Carbohydr Res 1998, 305, 281–8.
[91]
Ramirez-Ramirez, N.; Romero-Garcia, E. R.; Calderon, V. C.; Avitia, C. I.; Tellez-Valencia, A.; Pedraza-Reyes, M., Expression, characterization and synergistic interactions of Myxobacter sp AL-1 Cel9 and Cel48 glycosyl hydrolases. International Journal of Molecular Sciences 2008, 9, (3), 247-257.
[92]
Bothwell, M. K.; Walker, L. P.; Wilson, D. B.; Irwin, D. C.; Price, M., SYNERGISM BETWEEN PURE THERMOMONOSPORA-FUSCA AND TRICHODERMA-REESEI CELLULASES. Biomass & Bioenergy 1993, 4, (4), 293-299.
[93]
Boisset, C.; Petrequin, C.; Chanzy, H.; Henrissat, B.; Schulein, M., Optimized mixtures of recombinant Humicola insolens cellulases for the biodegradation of crystalline cellulose. Biotechnology and Bioengineering 2001, 72, (3), 339-345.
[94]
Berger, E.; Zhang, D.; Zverlov, V. V.; Schwarz, W. H., Two noncellulosomal cellulases of Clostridium thermocellum, Cel9I and Cel48Y, hydrolyse crystalline cellulose synergistically. Fems Microbiology Letters 2007, 268, (2), 194-201.
[95]
Jung, H.; Yoon, H. G.; Park, W.; Choi, C.; Wilson, D. B.; Shin, D. H.; Kim, Y. J., Effect of sodium hydroxide treatment of bacterial cellulose on cellulase activity. Cellulose 2008, 15, (3), 465-471.
[96]
Hoshino, E.; Shiroishi, M.; Amano, Y.; Nomura, M.; Kanda, T., Synergistic actions of exo-type cellulases in the hydrolysis of cellulose with different crystallinities. Journal of Fermentation and Bioengineering 1997, 84, (4), 300-306.
[97]
Benoit, I.; Culleton, H.; Zhou, M.; DiFalco, M.; Aguilar-Osorio, G.; Battaglia, E.; Bouzid, O.; Brouwer, C. P.; El-Bushari, H. B.; Coutinho, P. M., Closely related fungi employ diverse enzymatic strategies to degrade plant biomass. Biotechnology for biofuels 2015, 8, (1), 107.
[98]
Lambertz, C.; Garvey, M.; Klinger, J.; Heesel, D.; Klose, H.; Fischer, R.; Commandeur, U., Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnology for biofuels 2014, 7, (1), 1.
[99]
Boonvitthya, N.; Bozonnet, S.; Burapatana, V.; O’Donohue, M. J.; Chulalaksananukul, W., Comparison of the heterologous expression of Trichoderma reesei endoglucanase II and cellobiohydrolase II in the yeasts Pichia pastoris and Yarrowia lipolytica. Molecular biotechnology 2013, 54, (2), 158-169.
[100]
Darby, R. A. J.; Cartwright, S. P.; Dilworth, M. V.; Bill, R. M., Which Yeast Species Shall I Choose? Saccharomyces cerevisiae Versus Pichia pastoris (Review). In Recombinant Protein Production in Yeast: Methods and Protocols, Bill, M. R., Ed. Humana Press: Totowa, NJ, 2012; pp 11-23.
[101]
Cregg, J. M.; Cereghino, J. L.; Shi, J.; Higgins, D. R., Recombinant protein expression in Pichia pastoris. Molecular biotechnology 2000, 16, (1), 23-52.
[102]
Topakas, E.; Moukouli, M.; Dimarogona, M.; Vafiadi, C.; Christakopoulos, P., Functional expression of a thermophilic glucuronoyl esterase from Sporotrichum thermophile: identification of the nucleophilic serine. Applied microbiology and biotechnology 2010, 87, (5), 1765-1772.
[103]
Topakas, E.; Moukouli, M.; Dimarogona, M.; Christakopoulos, P., Expression, characterization and structural modelling of a feruloyl esterase from the thermophilic fungus Myceliophthora thermophila. Applied microbiology and biotechnology 2012, 94, (2), 399-411.
[104]
Couturier, M.; Feliu, J.; Haon, M.; Navarro, D.; Lesage-Meessen, L.; Coutinho, P. M.; Berrin, J.-G., A thermostable GH45 endoglucanase from yeast: impact of its atypical multimodularity on activity. Microbial cell factories 2011, 10, (1), 1.
[105]
Couturier, M.; Haon, M.; Coutinho, P. M.; Henrissat, B.; Lesage-Meessen, L.; Berrin, J.-G., Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Applied and environmental microbiology 2011, 77, (1), 237-246.
[106]
Kittl, R.; Kracher, D.; Burgstaller, D.; Haltrich, D.; Ludwig, R., Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay. Biotechnology for biofuels 2012, 5, (1), 1.
[107]
Bey, M.; Zhou, S.; Poidevin, L.; Henrissat, B.; Coutinho, P. M.; Berrin, J.-G.; Sigoillot, J.-C., Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (family GH61) from Podospora anserina. Applied and environmental microbiology 2013, 79, (2), 488-496.
[108]
Rabert, C.; Weinacker, D.; Pessoa Jr, A.; Farías, J. G., Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system. Brazilian Journal of Microbiology 2013, 44, (2), 351-356.
[109]
Damasceno, L. M.; Huang, C.-J.; Batt, C. A., Protein secretion in Pichia pastoris and advances in protein production. Applied Microbiology and Biotechnology 2012, 93, (1), 31-39.
[110]
Hartner, F. S.; Ruth, C.; Langenegger, D.; Johnson, S. N.; Hyka, P.; Lin-Cereghino, G. P.; Lin-Cereghino, J.; Kovar, K.; Cregg, J. M.; Glieder, A., Promoter library designed for fine-tuned gene expression in Pichia pastoris. Nucleic acids research 2008, 36, (12), e76-e76.
[111]
Inan, M.; Aryasomayajula, D.; Sinha, J.; Meagher, M. M., Enhancement of protein secretion in Pichia pastoris by overexpression of protein disulfide isomerase. Biotechnology and bioengineering 2006, 93, (4), 771-778.
[112]
Younes, S. B.; Karray, F.; Sayadi, S., Isolation of thermophilic fungal strains producing oxido-reductase and hydrolase enzymes from various Tunisian biotopes. International Biodeterioration & Biodegradation 2011, 65, (7), 1104-1109.
[113]
Ding, S.-j.; Ge, W.; Buswell, J. A., Secretion, purification and characterisation of a recombinant Volvariella volvacea endoglucanase expressed in the yeast Pichia pastoris. Enzyme and Microbial Technology 2002, 31, (5), 621-626.
[114]
Boonvitthya, N.; Tanapong, P.; Kanngan, P.; Burapatana, V.; Chulalaksananukul, W., Cloning and expression of the Aspergillus oryzae glucan 1, 3-beta-glucosidase A (exgA) in Pichia pastoris. Biotechnology letters 2012, 34, (10), 1937-1943.
[115]
Cairns, J. R. K.; Esen, A., β-Glucosidases. Cellular and Molecular Life Sciences 2010, 67, (20), 3389-3405.
[116]
Tang, Z.; Liu, S.; Jing, H.; Sun, R.; Liu, M.; Chen, H.; Wu, Q.; Han, X., Cloning and expression of A. oryzae β-glucosidase in Pichia pastoris. Molecular biology reports 2014, 41, (11), 7567-7573.
[117]
Chinnathambi, V.; Balasubramanium, M.; Gurusamy, R.; Paramasamy, G., Molecular Cloning and Expression of a Family 6 Cellobiohydrolase Gene cbhII from Penicillium funiculosum NCL1. Advances in Bioscience and Biotechnology 2015, 6, (3), 213.
[118]
Zahri, S.; Zamani, M. R.; Motallebi, M.; Sadeghi, M., Cloning and characterization of cbhII gene from Trichoderma parceramosum and its expression in Pichia pastoris. Iranian Journal of Biotechnology 2005, 3, 204-215.
[119]
Liu, Y.; Yoshida, M.; Kurakata, Y.; Miyazaki, T.; Igarashi, K.; Samejima, M.; Fukuda, K.; Nishikawa, A.; Tonozuka, T., Crystal structure of a glycoside hydrolase family 6 enzyme, CcCel6C, a cellulase constitutively produced by Coprinopsis cinerea. FEBS journal 2010, 277, (6), 1532-1542.
[120]
Li, Y. L.; Li, H.; Li, A. N.; Li, D. C., Cloning of a gene encoding thermostable cellobiohydrolase from the thermophilic fungus Chaetomium thermophilum and its expression in Pichia pastoris. Journal of applied microbiology 2009, 106, (6), 1867-1875.
[121]
Ko, J.-A.; Ryu, Y. B.; Kwon, H.-J.; Jeong, H. J.; Park, S.-J.; Kim, C. Y.; Wee, Y.-J.; Kim, D.; Lee, W. S.; Kim, Y.-M., Characterization of a novel steviol-producing β-glucosidase from Penicillium decumbens and optimal production of the steviol. Applied microbiology and biotechnology 2013, 97, (18), 8151-8161.
[122]
Harnpicharnchai, P.; Champreda, V.; Sornlake, W.; Eurwilaichitr, L., A thermotolerant β-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Protein expression and purification 2009, 67, (2), 61-69.
[123]
Yan, Q.; Hua, C.; Yang, S.; Li, Y.; Jiang, Z., High level expression of extracellular secretion of a β-glucosidase gene (PtBglu3) from Paecilomyces thermophila in Pichia pastoris. Protein Expression and Purification 2012, 84, (1), 64-72.
[124]
Karnaouri, A.; Topakas, E.; Paschos, T.; Taouki, I.; Christakopoulos, P., Cloning, expression and characterization of an ethanol tolerant GH3 β-glucosidase from Myceliophthora thermophila. PeerJ 2013, 1, e46.
[125]
Zhao, J.; Guo, C.; Tian, C.; Ma, Y., Heterologous expression and characterization of a GH3 β-glucosidase from thermophilic fungi Myceliophthora thermophila in Pichia pastoris. Applied biochemistry and biotechnology 2015, 177, (2), 511-527.
[126]
Kaur, J.; Chadha, B. S.; Kumar, B. A.; Kaur, G.; Saini, H. S., Purification and characterization of ß-glucosidase from Melanocarpus sp. MTCC 3922. Electronic Journal of Biotechnology 2007, 10, (2), 260-270.
[127]
Jeya, M.; Joo, A.-R.; Lee, K.-M.; Tiwari, M. K.; Lee, K.-M.; Kim, S.-H.; Lee, J.-K., Characterization of β-glucosidase from a strain of Penicillium purpurogenum KJS506. Applied microbiology and biotechnology 2010, 86, (5), 1473-1484.
[128]
Hong, J.; Tamaki, H.; Kumagai, H., Cloning and functional expression of thermostable β-glucosidase gene from Thermoascus aurantiacus. Applied microbiology and biotechnology 2007, 73, (6), 1331-1339.
[129]
Joo, A.-R.; Jeya, M.; Lee, K.-M.; Sim, W.-I.; Kim, J.-S.; Kim, I.-W.; Kim, Y.-S.; Oh, D.-K.; Gunasekaran, P.; Lee, J.-K., Purification and characterization of a β-1, 4-glucosidase from a newly isolated strain of Fomitopsis pinicola. Applied microbiology and biotechnology 2009, 83, (2), 285-294.
[130]
Amouri, B.; Gargouri, A., Characterization of a novel β-glucosidase from a Stachybotrys strain. Biochemical Engineering Journal 2006, 32, (3), 191-197.
[131]
Ramani, G.; Meera, B.; Vanitha, C.; Rajendhran, J.; Gunasekaran, P., Molecular cloning and expression of thermostable glucose-tolerant β-glucosidase of Penicillium funiculosum NCL1 in Pichia pastoris and its characterization. Journal of industrial microbiology & biotechnology 2015, 42, (4), 553-565.
[132]
Liu, G.; Wei, X.; Qin, Y.; Qu, Y., Characterization of the endoglucanase and glucomannanase activities of a glycoside hydrolase family 45 protein from Penicillium decumbens 114-2. The Journal of general and applied microbiology 2010, 56, (3), 223-229.
[133]
Igarashi, K.; Ishida, T.; Hori, C.; Samejima, M., Characterization of an endoglucanase belonging to a new subfamily of glycoside hydrolase family 45 of the basidiomycete Phanerochaete chrysosporium. Applied and environmental microbiology 2008, 74, (18), 5628-5634.
[134]
Zhao, J.; Shi, P.; Li, Z.; Yang, P.; Luo, H.; Bai, Y.; Wang, Y.; Yao, B., Two neutral thermostable cellulases from Phialophora sp. G5 act synergistically in the hydrolysis of filter paper. Bioresource technology 2012, 121, 404-410.
[135]
Wonganu, B.; Pootanakit, K.; Boonyapakron, K.; Champreda, V.; Tanapongpipat, S.; Eurwilaichitr, L., Cloning, expression and characterization of a thermotolerant endoglucanase from Syncephalastrum racemosum (BCC18080) in Pichia pastoris. Protein expression and purification 2008, 58, (1), 78-86.
[136]
Liu, G.; Qin, Y.; Hu, Y.; Gao, M.; Peng, S.; Qu, Y., An endo-1, 4-β-glucanase PdCel5C from cellulolytic fungus Penicillium decumbens with distinctive domain composition and hydrolysis product profile. Enzyme and microbial technology 2013, 52, (3), 190-195.
[137]
Rubini, M.; Dillon, A.; Kyaw, C.; Faria, F.; Poças‐Fonseca, M.; Silva‐Pereira, I., Cloning, characterization and heterologous expression of the first Penicillium echinulatum cellulase gene. Journal of applied microbiology 2010, 108, (4), 1187-1198.
[138]
Zhao, J.; Shi, P.; Huang, H.; Li, Z.; Yuan, T.; Yang, P.; Luo, H.; Bai, Y.; Yao, B., A novel thermoacidophilic and thermostable endo-β-1, 4-glucanase from Phialophora sp. G5: its thermostability influenced by a distinct β-sheet and the carbohydrate-binding module. Applied microbiology and biotechnology 2012, 95, (4), 947-955.
[139]
Ding, S. j.; Ge, W.; Buswell, J. A., Endoglucanase I from the edible straw mushroom, Volvariella volvacea. European Journal of Biochemistry 2001, 268, (22), 5687-5695.
[140]
Liu, Y.-S.; Baker, J. O.; Zeng, Y.; Himmel, M. E.; Haas, T.; Ding, S.-Y., Cellobiohydrolase hydrolyzes crystalline cellulose on hydrophobic faces. Journal of Biological Chemistry 2011, 286, (13), 11195-11201.
[141]
Várnai, A.; Tang, C.; Bengtsson, O.; Atterton, A.; Mathiesen, G.; Eijsink, V. G., Expression of endoglucanases in Pichia pastoris under control of the GAP promoter. Microbial cell factories 2014, 13, (1), 1.
[142]
Li, C.-H.; Wang, H.-R.; Yan, T.-R., Cloning, purification, and characterization of a heat-and alkaline-stable endoglucanase B from Aspergillus niger BCRC31494. Molecules 2012, 17, (8), 9774-9789.
[143]
Kim, H. M.; Lee, Y. G.; Patel, D. H.; Lee, K. H.; Lee, D.-S.; Bae, H.-J., Characteristics of bifunctional acidic endoglucanase (Cel5B) from Gloeophyllum trabeum. Journal of industrial microbiology & biotechnology 2012, 39, (7), 1081-1089.
[144]
Jang, H.-D.; Chang, K.-S., Thermostable cellulases from Streptomycessp.: scale-up production in a 50-l fermenter. Biotechnology letters 2005, 27, (4), 239-242.
[145]
Mitrovic, A.; Flicker, K.; Steinkellner, G.; Gruber, K.; Reisinger, C.; Schirrmacher, G.; Camattari, A.; Glieder, A., Thermostability improvement of endoglucanase Cel7B from Hypocrea pseudokoningii. Journal of Molecular Catalysis B: Enzymatic 2014, 103, 16-23.
[146]
Wang, J.; Quirk, A.; Lipkowski, J.; Dutcher, J. R.; Hill, C.; Mark, A.; Clarke, A. J., Real-time observation of the swelling and hydrolysis of a single crystalline cellulose fiber catalyzed by cellulase 7B from Trichoderma reesei. Langmuir 2012, 28, (25), 9664-9672.
[147]
Toda, H.; Nagahata, N.; Amano, Y.; Nozaki, K.; Kanda, T.; Okazaki, M.; Shimosaka, M., Gene cloning of cellobiohydrolase II from the white rot fungus Irpex lacteus MC-2 and its expression in Pichia pastoris. Bioscience, biotechnology, and biochemistry 2008, 72, (12), 3142-3147.
[148]
Poidevin, L.; Feliu, J.; Doan, A.; Berrin, J.-G.; Bey, M.; Coutinho, P. M.; Henrissat, B.; Record, E.; Heiss-Blanquet, S., Insights into exo-and endoglucanase activities of family 6 glycoside hydrolases from Podospora anserina. Applied and environmental microbiology 2013, 79, (14), 4220-4229.
[149]
Sun, F. F.; Bai, R.; Yang, H.; Wang, F.; He, J.; Wang, C.; Tu, M., Heterologous expression of codon optimized Trichoderma reesei Cel6A in Pichia pastoris. Enzyme and Microbial Technology 2016, 92, 107-116.
[150]
Zi-Zhong, T.; Zhen-Fang, W.; Hui, C.; Xin, L.; Xue-yi, H.; Qi, W., Characterization of novel EGs reconstructed from Bacillus subtilis endoglucanase. Applied biochemistry and biotechnology 2013, 169, (6), 1764-1773.
[151]
Gavlighi, H. A.; Meyer, A. S.; Mikkelsen, J. D., Enhanced enzymatic cellulose degradation by cellobiohydrolases via product removal. Biotechnology letters 2013, 35, (2), 205-212.
[152]
Vogl, T.; Glieder, A., Regulation of Pichia pastoris promoters and its consequences for protein production. New biotechnology 2013, 30, (4), 385-404.
[153]
Morrow Jr, K. J., Improving protein production processes. Gen Eng News 2007, 27, (5), 50-4.
[154]
Cereghino, G. P. L.; Cereghino, J. L.; Ilgen, C.; Cregg, J. M., Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Current opinion in biotechnology 2002, 13, (4), 329-332.
[155]
Heyland, J.; Fu, J.; Blank, L. M.; Schmid, A., Quantitative physiology of Pichia pastoris during glucose‐limited high‐cell density fed‐batch cultivation for recombinant protein production. Biotechnology and bioengineering 2010, 107, (2), 357-368.
[156]
Krainer, F. W.; Dietzsch, C.; Hajek, T.; Herwig, C.; Spadiut, O.; Glieder, A., Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway. Microbial cell factories 2012, 11, (1), 1.
[157]
Potgieter, T. I.; Cukan, M.; Drummond, J. E.; Houston-Cummings, N. R.; Jiang, Y.; Li, F.; Lynaugh, H.; Mallem, M.; McKelvey, T. W.; Mitchell, T., Production of monoclonal antibodies by glycoengineered Pichia pastoris. Journal of biotechnology 2009, 139, (4), 318-325.
[158]
Ye, J.; Ly, J.; Watts, K.; Hsu, A.; Walker, A.; McLaughlin, K.; Berdichevsky, M.; Prinz, B.; Sean Kersey, D.; d'Anjou, M., Optimization of a glycoengineered Pichia pastoris cultivation process for commercial antibody production. Biotechnology progress 2011, 27, (6), 1744-1750.
[159]
Cunha, F.; Esperanca, M.; Zangirolami, T.; Badino, A.; Farinas, C., Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase. Bioresource technology 2012, 112, 270-274.
[160]
Gasser, B.; Prielhofer, R.; Marx, H.; Maurer, M.; Nocon, J.; Steiger, M.; Puxbaum, V.; Sauer, M.; Mattanovich, D., Pichia pastoris: protein production host and model organism for biomedical research. Future microbiology 2013, 8, (2), 191-208.
[161]
Chung, B. K.-S.; Lee, D.-Y., Computational codon optimization of synthetic gene for protein expression. BMC systems biology 2012, 6, (1), 1.
[162]
Puxbaum, V.; Mattanovich, D.; Gasser, B., Quo vadis? The challenges of recombinant protein folding and secretion in Pichia pastoris. Applied microbiology and biotechnology 2015, 99, (7), 2925-2938.
[163]
Kim, S.; Warburton, S.; Boldogh, I.; Svensson, C.; Pon, L.; d’Anjou, M.; Stadheim, T. A.; Choi, B.-K., Regulation of alcohol oxidase 1 (AOX1) promoter and peroxisome biogenesis in different fermentation processes in Pichia pastoris. Journal of biotechnology 2013, 166, (4), 174-181.
[164]
Wang, X.; Wang, Q.; Wang, J.; Bai, P.; Shi, L.; Shen, W.; Zhou, M.; Zhou, X.; Zhang, Y.; Cai, M., Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris. Journal of Biological Chemistry 2016, 291, (12), 6245-6261.
[165]
Mellitzer, A.; Ruth, C.; Gustafsson, C.; Welch, M.; Birner-Grünberger, R.; Weis, R.; Purkarthofer, T.; Glieder, A., Synergistic modular promoter and gene optimization to push cellulase secretion by Pichia pastoris beyond existing benchmarks. Journal of biotechnology 2014, 191, 187-195.
[166]
Liang, S.; Zou, C.; Lin, Y.; Zhang, X.; Ye, Y., Identification and characterization of P GCW14: a novel, strong constitutive promoter of Pichia pastoris. Biotechnology letters 2013, 35, (11), 1865-1871.
[167]
Charoenrat, T.; Sangprapai, K.; Promdonkoy, P.; Kocharin, K.; Tanapongpipat, S.; Roongsawang, N., Enhancement of thermostable β-glucosidase production in a slow methanol utilization strain of Pichia pastoris by optimization of the specific methanol supply rate. Biotechnology and Bioprocess Engineering 2015, 20, (2), 315-323.
[168]
Cos, O.; Serrano, A.; Montesinos, J. L.; Ferrer, P.; Cregg, J. M.; Valero, F., Combined effect of the methanol utilization (Mut) phenotype and gene dosage on recombinant protein production in Pichia pastoris fed-batch cultures. Journal of biotechnology 2005, 116, (4), 321-335.
[169]
Cregg, J. M.; Madden, K. R.; Barringer, K. J.; Thill, G. P.; Stillman, C. A., Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Molecular and cellular biology 1989, 9, (3), 1316-1323.
[170]
Küberl, A.; Schneider, J.; Thallinger, G. G.; Anderl, I.; Wibberg, D.; Hajek, T.; Jaenicke, S.; Brinkrolf, K.; Goesmann, A.; Szczepanowski, R., High-quality genome sequence of Pichia pastoris CBS7435. Journal of biotechnology 2011, 154, (4), 312-320.
[171]
Shen, S.; Sulter, G.; Jeffries, T. W.; Cregg, J. M., A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene 1998, 216, (1), 93-102.
[172]
Ahn, J.; Hong, J.; Lee, H.; Park, M.; Lee, E.; Kim, C.; Choi, E.; Jung, J.; Lee, H., Translation elongation factor 1-α gene from Pichia pastoris: molecular cloning, sequence, and use of its promoter. Applied microbiology and biotechnology 2007, 74, (3), 601-608.
[173]
Stadlmayr, G.; Mecklenbräuker, A.; Rothmüller, M.; Maurer, M.; Sauer, M.; Mattanovich, D.; Gasser, B., Identification and characterisation of novel Pichia pastoris promoters for heterologous protein production. Journal of biotechnology 2010, 150, (4), 519-529.
[174]
Menendez, J.; Valdes, I.; Cabrera, N., The ICL1 gene of Pichia pastoris, transcriptional regulation and use of its promoter. Yeast 2003, 20, (13), 1097-1108.
[175]
Ahn, J.; Hong, J.; Park, M.; Lee, H.; Lee, E.; Kim, C.; Lee, J.; Choi, E.-s.; Jung, J.-k.; Lee, H., Phosphate-responsive promoter of a Pichia pastoris sodium phosphate symporter. Applied and environmental microbiology 2009, 75, (11), 3528-3534.
[176]
Cregg, J. M.; Tolstorukov, I. I., P. pastoris ADH promoter and use thereof to direct expression of proteins. In Google Patents: 2012.
[177]
Waterham, H. R.; Digan, M. E.; Koutz, P. J.; Lair, S. V.; Cregg, J. M., Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 1997, 186, (1), 37-44.
[178]
Vogl, T.; Sturmberger, L.; Kickenweiz, T.; Wasmayer, R.; Schmid, C.; Hatzl, A.-M.; Gerstmann, M. A.; Pitzer, J.; Wagner, M.; Thallinger, G. G., A Toolbox of Diverse Promoters Related to Methanol Utilization: Functionally Verified Parts for Heterologous Pathway Expression in Pichia pastoris. ACS synthetic biology 2015, 5, (2), 172-186.
[179]
De Almeida, J. R. M.; de Moraes, L. M. P.; Torres, F. A. G., Molecular characterization of the 3‐phosphoglycerate kinase gene (PGK1) from the methylotrophic yeast Pichia pastoris. Yeast 2005, 22, (9), 725-737.
[180]
Sears, I. B.; O'Connor, J.; Rossanese, O. W.; Glick, B. S., A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris. Yeast 1998, 14, (8), 783-790.
[181]
Liang, S.; Zou, C.; Lin, Y.; Zhang, X.; Ye, Y., Identification and characterization of PGCW14: a novel, strong constitutive promoter of Pichia pastoris. Biotechnology letters 2013, 35, (11), 1865-1871.
[182]
Prielhofer, R.; Maurer, M.; Klein, J.; Wenger, J.; Kiziak, C.; Gasser, B.; Mattanovich, D., Induction without methanol: novel regulated promoters enable high-level expression in Pichia pastoris. Microbial cell factories 2013, 12, (1), 5.
[183]
Suto, M.; Tomita, F., Induction and catabolite repression mechanisms of cellulase in fungi. Journal of Bioscience and Bioengineering 2001, 92, (4), 305-311.
[184]
Xuan, Y.; Zhou, X.; Zhang, W.; Zhang, X.; Song, Z.; Zhang, Y., An upstream activation sequence controls the expression of AOX1 gene in Pichia pastoris. FEMS yeast research 2009, 9, (8), 1271-1282.
[185]
Alper, H.; Fischer, C.; Nevoigt, E.; Stephanopoulos, G., Tuning genetic control through promoter engineering. Proceedings of the National Academy of Sciences of the United States of America 2005, 102, (36), 12678-12683.
[186]
Staley, C. A.; Huang, A.; Nattestad, M.; Oshiro, K. T.; Ray, L. E.; Mulye, T.; Li, Z. H.; Le, T.; Stephens, J. J.; Gomez, S. R., Analysis of the 5′ untranslated region (5′ UTR) of the alcohol oxidase 1 (AOX1) gene in recombinant protein expression in Pichia pastoris. Gene 2012, 496, (2), 118-127.
[187]
Salis, H. M.; Mirsky, E. A.; Voigt, C. A., Automated design of synthetic ribosome binding sites to control protein expression. Nature biotechnology 2009, 27, (10), 946-950.
[188]
Bakke, I.; Berg, L.; Aune, T. E. V.; Brautaset, T.; Sletta, H.; Tøndervik, A.; Valla, S., Random mutagenesis of the PM promoter as a powerful strategy for improvement of recombinant-gene expression. Applied and environmental microbiology 2009, 75, (7), 2002-2011.
[189]
Nevoigt, E.; Fischer, C.; Mucha, O.; Matthäus, F.; Stahl, U.; Stephanopoulos, G., Engineering promoter regulation. Biotechnology and bioengineering 2007, 96, (3), 550-558.
[190]
Qin, X.; Qian, J.; Yao, G.; Zhuang, Y.; Zhang, S.; Chu, J., GAP promoter library for fine-tuning of gene expression in Pichia pastoris. Applied and environmental microbiology 2011, 77, (11), 3600-3608.
[191]
Zhang, A.-L.; Luo, J.-X.; Zhang, T.-Y.; Pan, Y.-W.; Tan, Y.-H.; Fu, C.-Y.; Tu, F.-z., Recent advances on the GAP promoter derived expression system of Pichia pastoris. Molecular biology reports 2009, 36, (6), 1611-1619.
[192]
Renuse, S.; Madugundu, A. K.; Kumar, P.; Nair, B. G.; Gowda, H.; Prasad, T.; Pandey, A., Proteomic analysis and genome annotation of Pichia pastoris, a recombinant protein expression host. Proteomics 2014, 14, (23-24), 2769-2779.
[193]
Dikicioglu, D.; Wood, V.; Rutherford, K. M.; McDowall, M. D.; Oliver, S. G., Improving functional annotation for industrial microbes: a case study with Pichia pastoris. Trends in biotechnology 2014, 32, (8), 396-399.
[194]
Yurimoto, H.; Oku, M.; Sakai, Y., Yeast methylotrophy: metabolism, gene regulation and peroxisome homeostasis. International journal of microbiology 2011, 2011.
[195]
van der Klei, I. J.; Yurimoto, H.; Sakai, Y.; Veenhuis, M., The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 2006, 1763, (12), 1453-1462.
[196]
Yurimoto, H., Molecular basis of methanol-inducible gene expression and its application in the methylotrophic yeast Candida boidinii. Bioscience, biotechnology, and biochemistry 2009, 73, (4), 793-800.
[197]
Hartner, F. S.; Glieder, A., Regulation of methanol utilisation pathway genes in yeasts. Microbial Cell Factories 2006, 5, (1), 1.
[198]
Prielhofer, R.; Cartwright, S. P.; Graf, A. B.; Valli, M.; Bill, R. M.; Mattanovich, D.; Gasser, B., Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level. BMC genomics 2015, 16, (1), 1.
[199]
van Zutphen, T.; Baerends, R. J.; Susanna, K. A.; De Jong, A.; Kuipers, O. P.; Veenhuis, M.; Van der Klei, I. J., Adaptation of Hansenula polymorpha to methanol: a transcriptome analysis. BMC genomics 2010, 11, (1), 1.
[200]
Ravin, N. V.; Eldarov, M. A.; Kadnikov, V. V.; Beletsky, A. V.; Schneider, J.; Mardanova, E. S.; Smekalova, E. M.; Zvereva, M. I.; Dontsova, O. A.; Mardanov, A. V., Genome sequence and analysis of methylotrophic yeast Hansenula polymorpha DL1. BMC genomics 2013, 14, (1), 1.
[201]
Yurimoto, H.; Komeda, T.; Lim, C. R.; Nakagawa, T.; Kondo, K.; Kato, N.; Sakai, Y., Regulation and evaluation of five methanol-inducible promoters in the methylotrophic yeast Candida boidinii. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression 2000, 1493, (1), 56-63.
[202]
Kranthi, B. V.; Kumar, R.; Kumar, N. V.; Rao, D. N.; Rangarajan, P. N., Identification of key DNA elements involved in promoter recognition by Mxr1p, a master regulator of methanol utilization pathway in Pichia pastoris. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 2009, 1789, (6), 460-468.
[203]
Kranthi, B. V.; Kumar, V.; Rajendra, H.; Rangarajan, P. N., Identification of Mxr1p‐binding sites in the promoters of genes encoding dihydroxyacetone synthase and peroxin 8 of the methylotrophic yeast Pichia pastoris. Yeast 2010, 27, (9), 705-711.
Browse journals by subject